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Background 

Lund University one of the partners in Workpage 3 - dealing 

with Fermentation technology - in the project BIOLYFE 

 

 

 

 

 Subcontractor 
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Outline 

• Challenges in lignocellulose fermentation 

• Mixing 

• Fermentation process design 

• Xylose fermentation 

• Conclusions 
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Feedstock 

Pretreatment 

Hydrolysis 

Fermentation 

Separation Ethanol 

Lignin & other residues 

Process  

water 

SSF 

ISSUES 

Co-factor regeneration (xylose & arabinose pathways  

& aldehyde reduction) 

ATP demand (weak acid & transport) 

Ethanol tolerance 

Temperature tolerance 

Osmotic stress & compatible solute formation 

Other uncharacterized toxic effects  

Competition/contamination  

Environmental factors 

Pentoses, phenolics, carboxylic 

acids, degradation products 

(furans), other inhibitors 

Salt (from neutralization) 

Hexoses 

High temperature (SSF) 

Nutrient depletion 

Ethanol  

Microbial contamination 

Lignocellulose conversion – Fermentation 

challenges 
Genetic factors 

Xylose pathway 

– oxidation/reduction 

XR/XDH/XK 

– isomerization 

XI/XK 

Arabinose pathway 

– Oxidation/reduction 

XR/LAD/LXR/XDH 

– Isomerization  

AI/RK/RE  

Activation of PPP 

 

 

Almeida et al. Biotechnol. J, 3, 286-299, 2011  
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Sugars – different forms.. 

Sugar 

200 g/L 

Sugar 

 200 g/L 

Milled pine wood, 

moisture content 50%, 

Glucan 35%, Mannan 

12% 

Sugar 

  130 g/L 

Pretreated pine, 

17%WIS, glucan 45%, 

dissolved glucose 30 

g/L, mannose 25 g/L  
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Increased  final ethanol titer Higher fiber contents to be handled 

Mixing issues 

• Temperature control 

• Distribution & blending 

• Effects on process 

performance 

Lower yield  

Enzyme 

Fibre 

concentration 

Yeast 

Inhibitor problems 

• Effects yeast metabolism 

• Effects on enzymatic hydrolysis 
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The basic process layouts 

Pre-

treatment 

 

Enzymatic 

hydrolysis 

 

 

Fermen-

tation 

SHF 

Temperature 45 -50ºC 

Temperature 30 -35ºC 

Temperature 180-210ºC 

Separate hydrolysis and fermentation 
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Glucan  43% 

Lignin  46% 

Mixing – example 1: 
Spruce – a softwood material 
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Mixing 

Hydrolysis of pretreated spruce 

Enzyme used Cellic CTec  
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Mixing 
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Hydrolysis of pretreated spruce 

20 FPU/g glucan 

Palmqvist et al. Biotechnol Biofuels. 4: 10, 2011 

500 RPM 

300 RPM 

150 RPM 

75 RPM 

25 RPM 

MIXING MATTERS!! 

Increased stirring 
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Mixing at high solids contents 

 

Torque measurement (and hence measured power consumption) 

   P = 2 * π * Ni * M 

Powerful, geared 

servo motor 
“Anchor type”  

stirrer 

Heating/cooling 

with water jacket 

(Control on jacket or 

vessel temperature) 
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What happens when we increase the 

WIS content? 
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Spruce 

Yield increases with increased 

WIS content!! 

 

 

Enzymatic hydrolysis at 10, 15 and 20 % WIS  

Enzyme used: Cellic CTec2 

Palmqvist et al. Biotechnology for Biofuels, 2012, 5:57 
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Why? 

The mixing power is very different!  

 ~ five fold higher total energy input at 20 % WIS 
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Viscosity is retained for a long time 
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If the same mixing power (rather than stirring 

rate) is used, the behaviour is as expected 
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Palmqvist et al. Biotechnology for Biofuels, 2012, 5:57 
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Arundo Donax   

Pretreated Arundo Donax 
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MIXING DOES NOT MATTER! 

Arundo is different! 
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Very rapid loss of viscosity in the Arundo case! 
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Temperature effects on hydrolysis 

Same yield in 

half the time! 
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Pre-

treatment 

 

 

Enzymatic 

hydrolysis 

and 

fermentation  

SSF 

Temperature 45 -50ºC 

Temperature 30 -32ºC 

Temperature 180-210ºC Temperature 180-210ºC 
Pre-

treatment 

 

Enzymatic 

hydrolysis 

 

 

Fermen-

tation 

SHF 

The basic process layouts 

Temperature 32 -37ºC 

Simultaneous saccharification  

and fermentation 
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Yeast: Ethanol Red (industrial) 
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Bhargav Prasad Kodaganti, M. Sc. Thesis, Lund Univ. 2011 

SO2 catalyzed 

SSF – enzyme dose effect 

(Very very high…) 
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Yeast: Ethanol Red (industrial) 
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Bhargav Prasad Kodaganti, M. Sc. Thesis, Lund Univ. 2011 

Autohydrolysis  

SSF – enzyme dose effect 



Lund university / Department of Chemical Engineering 

0

5

10

15

20

25

30

0 12 24 36 48 60 72 84 96

C
o

n
c

e
n

tr
a

ti
o

n
 o

f 
E

th
a
n

o
l 
(g

/l
) 

Time (h) 
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Difference due to 

pretreatment 

SSF – pretreatment effect 
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The batch SSF 

Substrate 

Enzymes 

Yeast 

SSF 
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Pretreatment Enzymes 

Fed-batch SSF 

Yeast 

Substrate 
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Batch SSF

Enzyme fed
batch case 1

Enzyme fed
batch case 2

Enzyme fed
batch case 3

Enzyme fed
batch case 4

Results obtained with four different enzyme feeding strategies  

20 FPU/g glucan Cellic CTEC 2, Ethanol Red, T 34 C 

4 

2 
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No improvement from enzyme feeding  

”Batch is best” 

Bhargav Prasad Kodaganti, M. Sc. Thesis, Lund Univ. 2011 
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Added pathway 

Xylose 

Xylitol 

Xylulose 

PPP 

Glycerol 

DHAP 

Xylulose-5-P 

Glyceraldehyde-3-P 

Acetate Ethanol Acetaldehyde 

Glycerol-3-P 

Fructose-1,6-DP 

NAD+ 

NAD

H 

NAD(P)H 

NAD(P)+ 

ATP 

ADP Pyruvate 

NADH 

NAD+ 

Fructose-6-P 

ATP 

ADP 

1,3-DP-glycerate 

NADH 

NAD+ 

2 ADP 

2 ATP 

NADH NAD+ NAD(P)+ NAD(P)H 

XR 

XDH 

XK 

Glucose-6-P 

ATP 

ADP 

AD AD 

GK 

PFK 

PGI 

TPI 

GPP 

GPD 

PDC 

GDH 

ADH ALD 

Olofsson et al., Biotechnology for biofuels, I:7, 2008 

Glucose and xylose co-fermentation in Saccharomyces 

cerevisiae 

XI 

Glucoseext 

Xyloseext 

Glucose 

The first problem in metabolism is to get in.. 
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Pre-
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The basic process layouts 

Temperature 32 -37ºC 

Simultaneous saccharification  

and co-fermentation 
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Pre-

treatment 

 

 

SSCF 

Hybrid 

Temperature 45 -50ºC 

Temperature 30 -32ºC 

Temperature 180-210ºC Temperature 180-210ºC 
Pre-

treatment 

 

Enzymatic 

hydrolysis 
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The basic process layouts 

Hydrolysis 
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25% higher ethanol yield! 
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Small things that matter..  
Don’t forget Biochemistry 101!! 

Significant effect on xylose consumption! 

34˚C,  

Xylose fermenting yeast TMB3400  

Enzyme used CTec3  
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Decrease use of chemicals 

Decrease enzyme use 

Milder pretreatment 

Problems with enzymatic 

hydrolysis 

Higher enzyme use  

or novel enzymes 

Harsher pretreatment / lignin removal 

Inhibitor problems 

Tolerant yeasts 

Detoxification 

Modified 

pretreatment 

Development trends 
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Increase in ethanol yields due to improved 

enzyme cocktails  

Reference enzyme 

mixture 

  Improved enzyme 

mixture 

Change in ethanol 

yield 

Cellic CTec (+ HTec)  Cellic CTec2 No significant 

increase 

Cellic CTec2  Intermediate 

enzyme blend 

~ 15 % increase 

Intermediate enzyme 

blend 

 Cellic CTec 3 ~ 8 % increase 

Overall increase ~ 24 % 

Batch SSF experiments at a WIS loading of 10 %.  

Yeast used: TMB3400 (Taurus Energy). T = 34 C. 
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Conclusions 

Pretreatment 

Feedstock 

Fermentation 

Enzymatic 

hydrolysis Enzymes Process conditions 

Material 
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See also poster: 

Process development of a hybrid saccharification 

and co-fermentation process for Arundo donax 

Palmqvist et al 


