

Lignocellulosic ethanol production at industrial scale (BIOLYFE)

David Chiaramonti

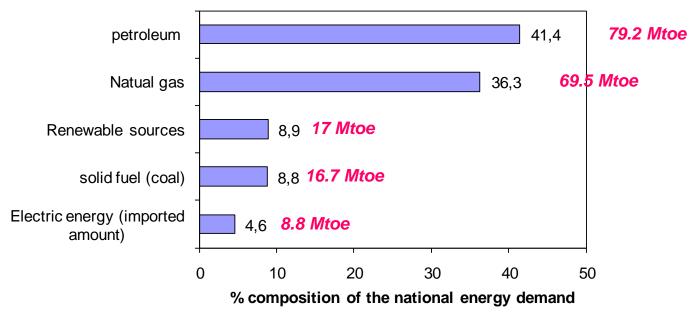
CREAR / RE-CORD University of Florence, Florence, ITALY

Arianna Giovannini, Alessandra Frattini, Simone Ferrero Chemtex/Mossi & Ghisolfi Group Tortona (AL), ITALY

Summary

- Status of Italian biofuel production capacity and use
- ➤ PROESATM and the Biolyfe project
- Preliminary results
- Construction of the Demonstration plant

STATUS OF ITALIAN BIOFUEL PRODUCTION CAPACITY AND USE



ITALY – NATIONAL ENERGY DEMAND

Population ~ 60 ML = 0.9 % of world

Total energy demand: 180-190 Mtoe ~ 1.6 % of world

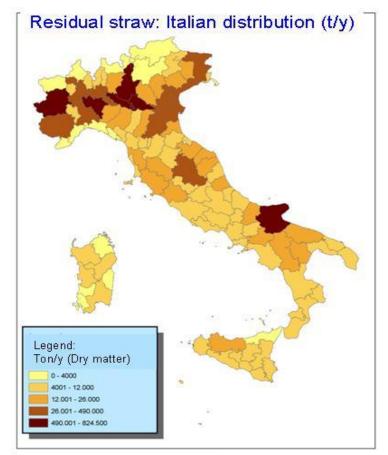
CO₂ emissions : 482Mt/a = 2% of the world emission and 14% of the European emissions

Source: Ministry for economic development - 2008

Energy supply still based on fossil fuels and foreign imports

• Still limited contribution from Renewables if compared to total energy consumption

Source: I. De Bari, ENEA, 2011



Italian bioenergy potential

ENEA's *national atlas* of biomass is a GIS tool which support the evaluation of local biomass potential

Biomass	Mtoe
Residual straw	6
Pruning	2
Forests	0.9
MSW (organic fraction)	0.6
bovine and swine manure	0.9
animal slaughter wastes	0.03
dedicated crops	4
Firewood	2
TOTAL	15

Source: I. De Bari, ENEA, 2011

http://www.enea.it/attivita_ricerca/energia/sistema_elettrico/Censimento_biomasse/SchedaCB.html

Italian National Action Plan on Renewables

	2005			2008			2020		
	Consumi da FER	Consumi finali lordi (CFL)		Consumi da FER	Consumi finali lordi (CFL)	FER / Consumi	Consumi da FER	Consumi finali lordi (CFL)	
	[Mtep]	[Mtep]	[%]	[Mtep]	[Mtep]	[%]	[Mtep]	[Mtep]	[%]
Elettricità	4,846	29,749	16,29%	5,040	30,399	16,58%	9,112	31,448	28,97%
Calore	1,916	68,501	2,80%	3,238	58,534	5,53%	9,520	60,135	15,83%
Trasporti	0,179	42,976	0,42%	0,723	42,619	1,70%	2,530	39,630	6,38%
Trasferimenti da altri Stati	-	-	-	-	-	-	1,144	-	-
Totale	6,941	141,226	4,91%	9,001	131,553	6,84%	22,306	131,214	17,00%

➢ BIOENERGY (2005 → 2020):

✓ Power	0.40	MTOE \rightarrow 1.8 MTOE
✓ Thermal Energy	1.65	MTOE \rightarrow 5.5 MTOE
✓ Transports	0.20	MTOE \rightarrow 2.5 MTOE
тот	2.25	MTOE → 9.8 MTOE
TOT RES	6.94	MTOE → 22.3 MTOE - 17 % Gross Final Energy
		Consumption

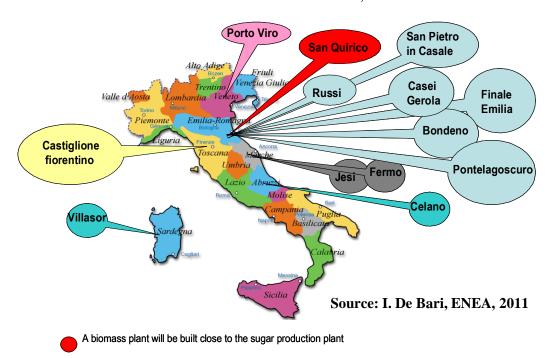
Biodiesel Production Capacity - Italy

<u>COMPANY</u>	PLANT LOCATION	PRODUCT.CAPACITY (t/y)
ALCHEMIA ITALIA SRL	Rovigo	15.000 (o)
BIO-VE-OIL OLIMPO SRL	🛣 Corato (BA)	100.000
CEREAL DOCKS SRL	Vicenza (VI)	150.000
COMLUBE SRL	Castenedolo – Brescia	120.000 (0)
DP LUBRIFICANTI SRL	Aprilia (LT)	155.520
ECOIL SRL	🕵 Priolo (SR)	200.000
F.A.R. – Divisione Polioli	Cologno Monzese (MI)	100.000 (0)
ECO FOX SRL	Vasto (CH)	199.416
ITAL BI OIL SRL	Monopoli (BA)	190.304
ITAL GREEN OIL	San Pietro di Morubio (VR)	365.000 (0)
GDR BIOCARBURANTI	Cernusco sul Naviglio (MI)	50.000 (o)
MYTHEN SPA	Ferrandina (MT)	200.000
NOVAOL SRL	Livorno (LI)	250.000
NOVAOL SRL	Ravenna (RA)	200.000
OIL.B SRL	Solbiate Olona (VA)	200.000
OXEM	Mezzana Bigli (PV)	200.000
Under realization	TOTALE:	2.395.240

Unused capacity (0)

ASSOCOSTIERI Unione Produttori Biocarburanti

Source: Assocostieri, 2011



Bioethanol Production Capacity - Italy

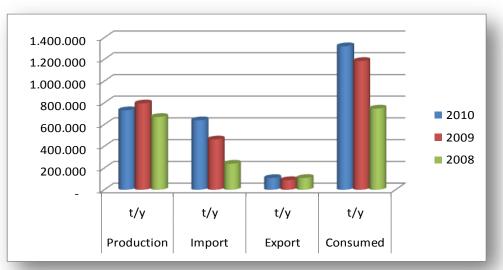
AZIENDE ASSOCIATE	LOCALITA'	CAPACITA' PRODUTTIVA (tonn.)
<u>Caviro Distillerie S.r.l.</u>	Faenza (RA)	43.000
I.M.A. S.r.l.	Partinico (PA)	172.000

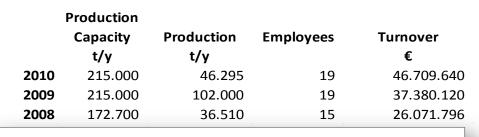
Conversion of Sugar Factories

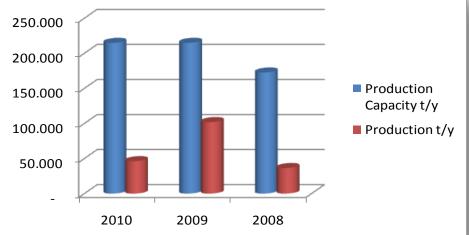
Common Organisation of the sugar market

16 plants out of 21 have been shut down or converted to other production

Most of these formerly-sugar plants should be converted to bioenergy

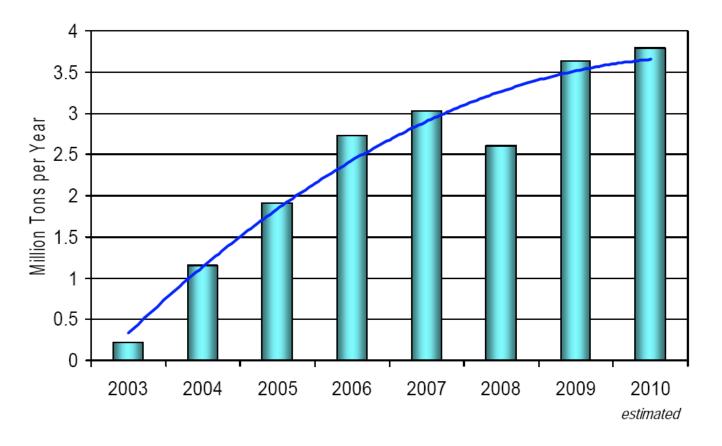



BIODIESEL - NATIONAL STATISTICS


	Production t/y			Consumed	Employees	Turnover
	U / Y	4 / y	47 y	U / Y		ŧ
2010	731.844	639.684	107.956	1.321.139	356	1.272.912.796
2009	795.118	463.390	88.670	1.185.573	364	1.205.473.761
2008	670.449	239.887	108.426	747.725	480	1.273.201.761

Source: Assocostieri, 2011

BIOETHANOL - NATIONAL STATISTICS



ETBE Consumption EU 2003 - 2010

2006 EU_{25} ^[1] Average Percentage of Ethers in Gasoline = 4.7 % v/v Italy: slightly above 5 % v/v

Source: DG Env: "EU Fuel Quality Monitoring - 2006 Report" and W.Mirabella, 2011

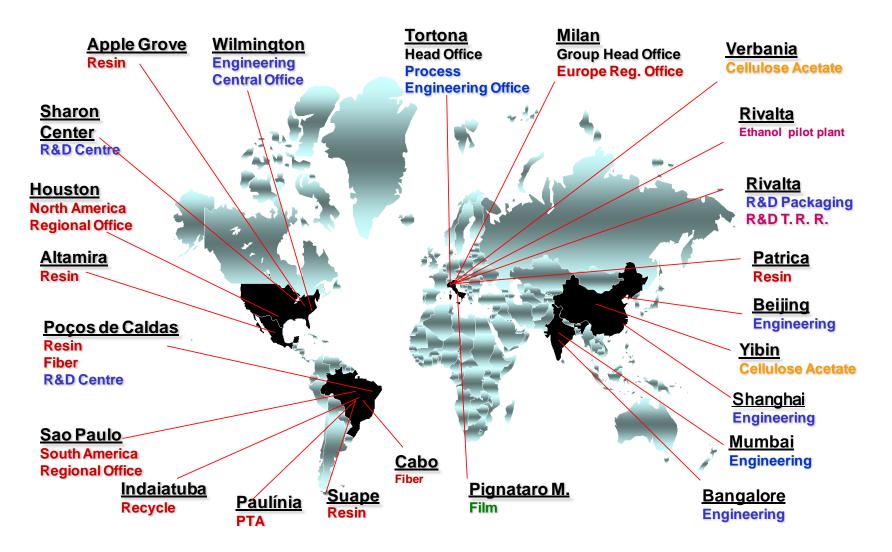
Source: EFOA

PROESA[™] AND THE BIOLYFE PROJECT

- Turnover : about 2.1 billion \$ in 2009
- 3 Business Units: PET Polymer, Acetates, Engineering
- Staff: 2600 persons on 6 location (Italy, Brazil, India, China, USA, Mexico)
- 3 R&D Centers: Italy, USA and Brazil

Mossi & Ghisolfi Group

1960 M&G was fou		1990	2000	2002	2003	2004	2005	2006	2007
Vittorio Ghiso kaging M Pha									
offered custo OPE and PVC	 Gr	Chemic Manufac roup activition tegrated ups e developm	turing P es were tream in		PET	Expan	sion P	hase	
	re:	oduction of sin (PET) f ickaging app	for food lications	Acquisition of Shell's PET business	Acquisition of Brazilian controlled Rhodia-ster from Rhone Poulenc	Start up of world's largest PET production unit at Altamira (Mexico)	Acquisit the worl class enginee group Chemte from Mitsubis Corpora	d ring x shi	


EU Biomass Conference, Berlin, Germany, 2011

M&G Overview: Sites

Chemtex Operations

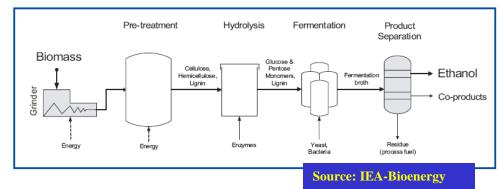
Chemtex Italy

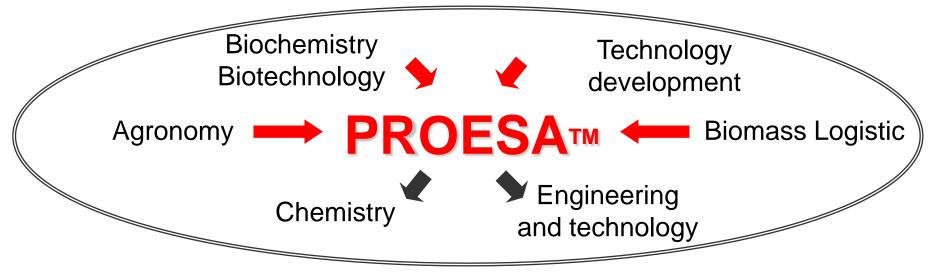
Chemtex USA

- Annual Turnover: USD 300 MM
- Employees: 1000

Chemtex China

Shanghai, Beijing



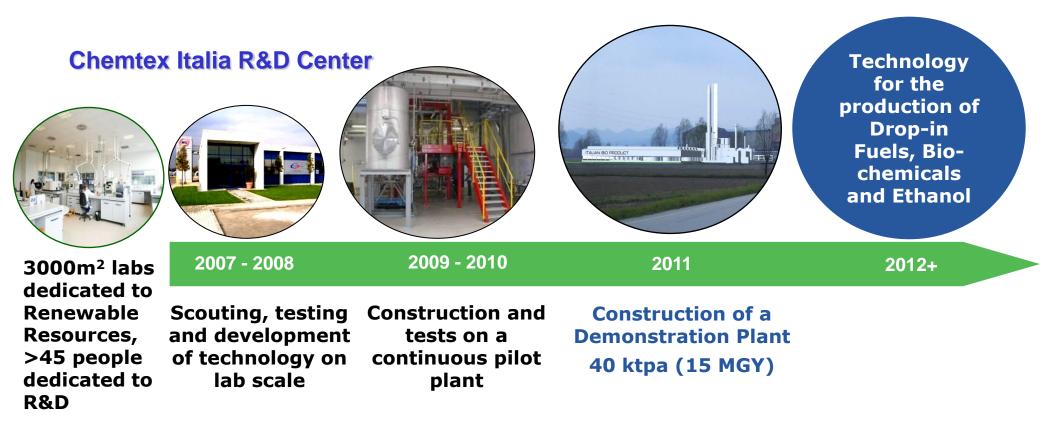


The lignocell.BioEtOH Chain

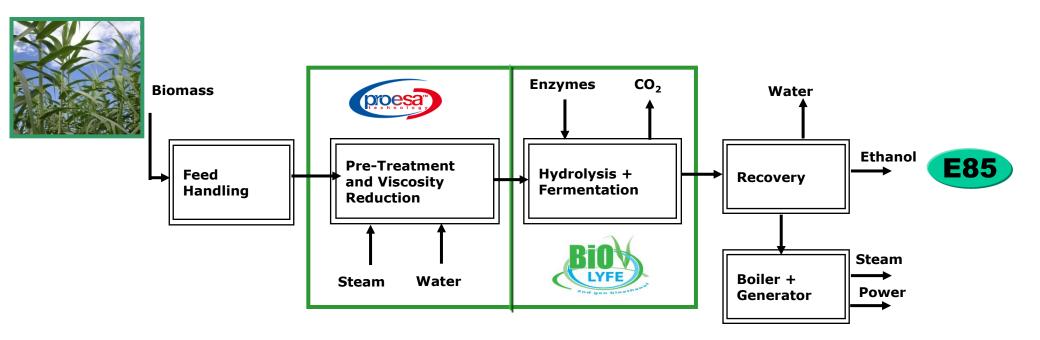
- > Main steps of the process:
 - BIOMASS PRETREATMENT
 - ⇒ HYDROLYSIS & FERMENTATION
 - ⇒ DISTILLATION AND EtOH RECOVERY
 - ⇒ VALORIZATION OF COPRODUCTS

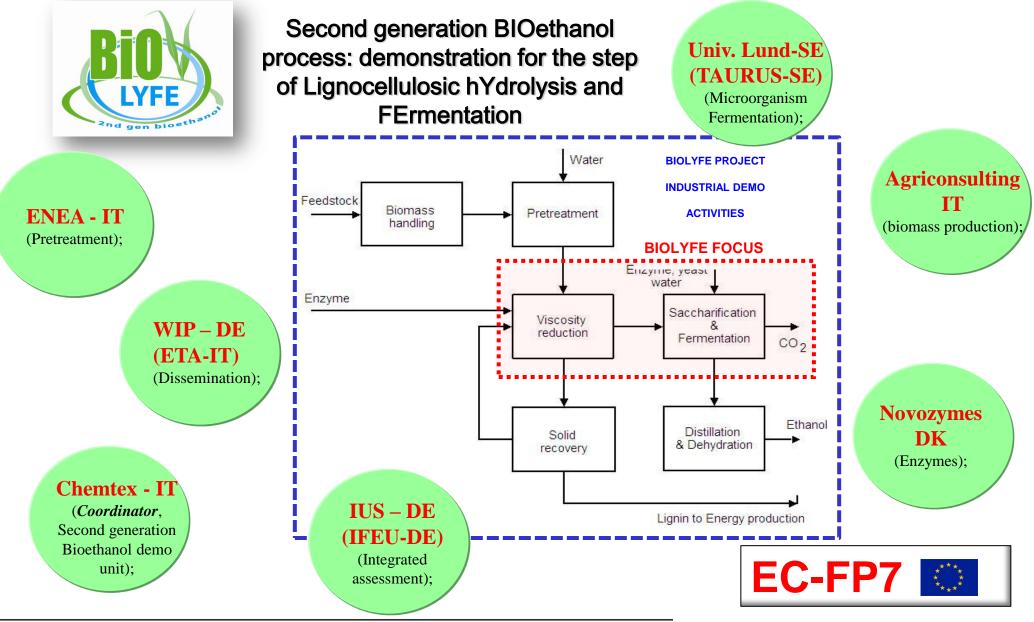
A very multidisciplinary approach is needed

 Scientific collaborations with ENEA, Turin Politechnic, CREAR-Univ.Florence, Univ.Genova, CRA.....



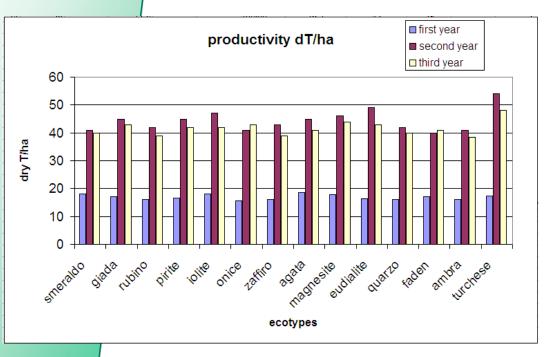
PRO.E.SA[™]: Steps


Break-through technology for the production of Bio-fuels and Bio-Chemicals from Cellulosic Biomass


The main sections developed in R&D are:

- **1.** Agronomy: Field experimentation. Best energy crops identification and characterization.
- 2. Biomass Pre-Treatment and Viscosity Reduction: Continuous process developed and piloted to produce cost-effective and clean fermentable sugars.
- **3. Hydrolysis and Fermentation:** Unique hybrid SSCF process scheme yielding high ethanol concentrations.

PRELIMINARY RESULTS

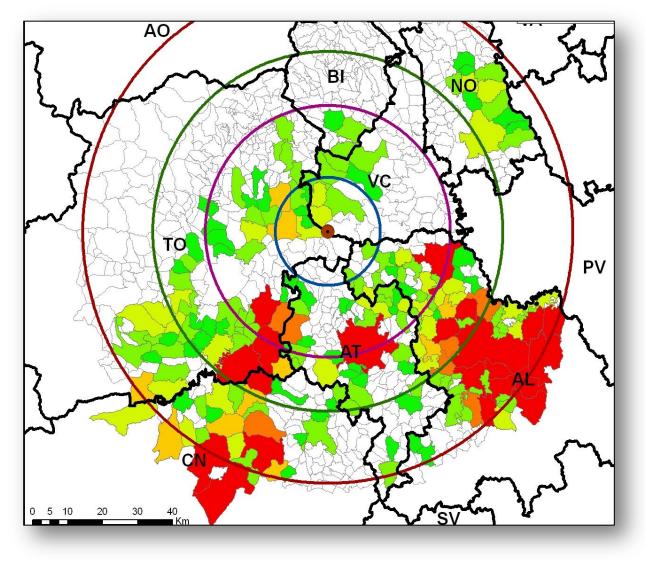


Cassana Experimental Farm (60 ha)

Arundo Donax – Results 2009

3rd year dry_ton/ha/y

US Project


Arundo donax nursery (~10 years old) in Columbus Ohio

Productivity: 43.1 dry T/ha

Both residues and dedicated crops under investigation. Most interesting:

✓ Straw

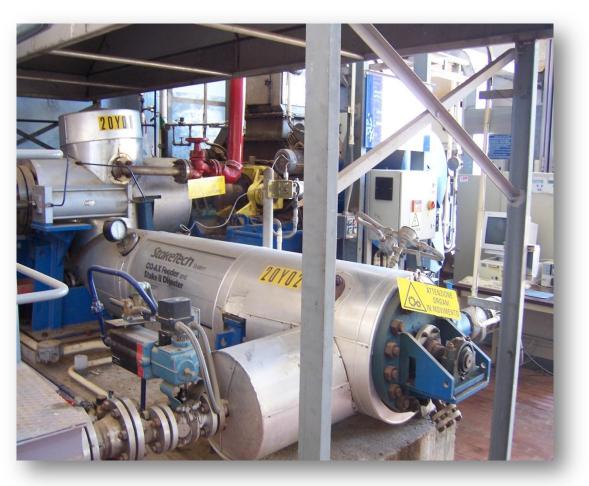
- ✓ Arundo Donax
- GIS Analysis of land availability, potential production, etc
- Contract development

SOURCE: AGRICONSULTING S.P.A. BASED ON REGIONE PIEMONTE DATA

Collaborations on Biomass Pretreatment (SE)

ENEA: steam explosion unit (300 kg/h biomass in)

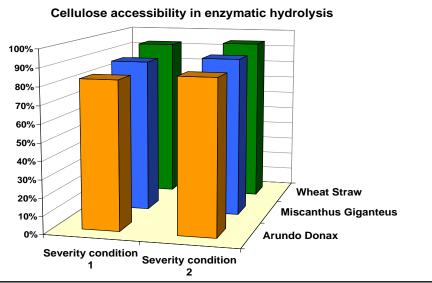
✓ Since 1992 ENEA owns and operates this pilot unit at the premises of the Trisaia R&D Center.


✓ ENEA has developed specific skills and expertise on this technology, investigating the main operational parameters needed to control this biomass pre-treatment steps.

PRIT (Industria 2015) project:

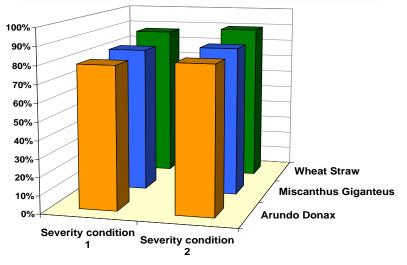
✓ Min.for Econ.Devevelopment

✓ CREAR (Univ.of Florence): energy valorization of lignin residue



PROESA[™] Technology Key Features

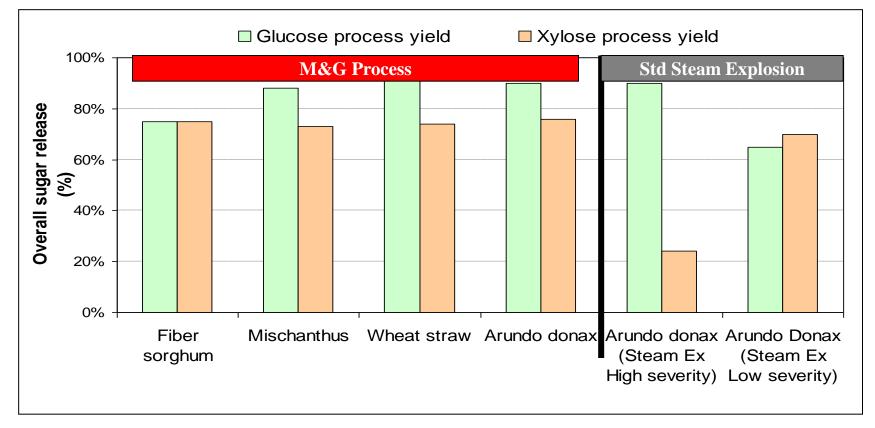
CAPABILITY TO USE A LARGE VARIETY OF BIOMASS AS COLLECTED (same hardware, changed process conditions only)


RUNNING ON A CONTINOUS PILOT SCALE IN RIVALTA LAB SINCE JUNE 2009

Pre-treatment pilot plant can be fed with several material with a size up to 5 cm.

Hemicellulose release during pre-treatment

Different feedstocks show a similar behaviour in pretreatment



PROESA[™] Technology Key Features

UNIQUE PRETREATMENT PRODUCING HIGH QUALITY LOW COST SUGAR FROM CELLULOSIC BIOMASS

5,0 4,5

4,0 3,5 3,0 2,5 2,0 1,5

1,0 0,5

kg_{biomass}/kg_{EtOH}

8346

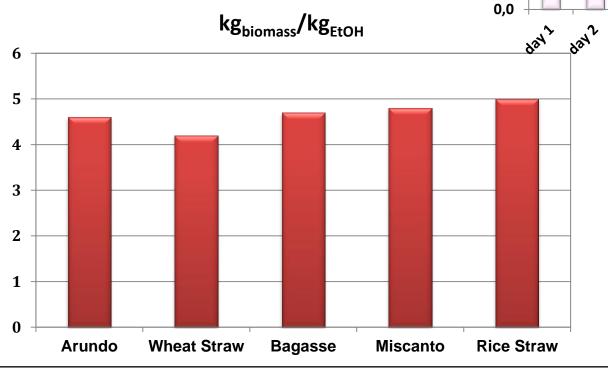
834¹

GOOD process stability on long run

834⁹

634⁸

day 10 average

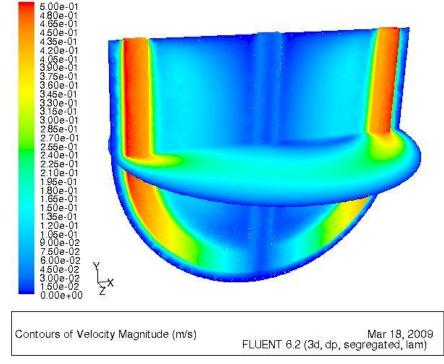

8345

634³

931A

PROESA[™] Technology Ethanol yields

GOOD yields also with different biomasses


PROESA[™] Technology Key Features

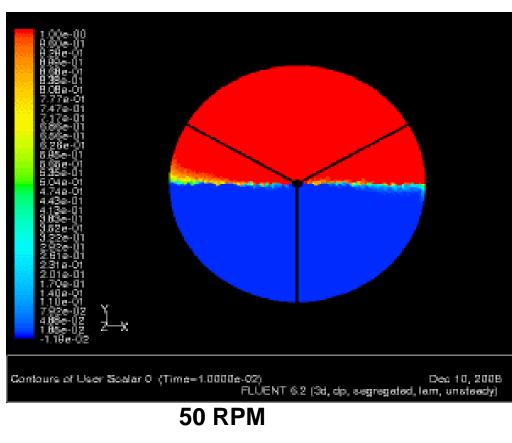
Lab. High Solid Viscosity Reduction

Viscosity reduction

Velocity Field – Stationary Model

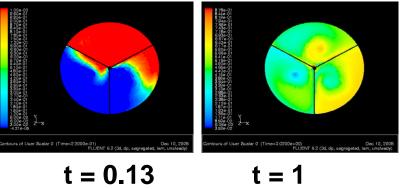
Viscosity determination of pretreated material during hydrolysis by CFD Modelling.

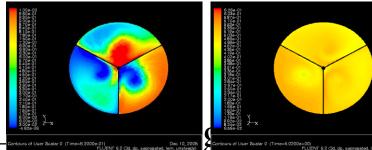
70 RPM, Moving Reference Frame 735.846 cells – unstructured.



PROESA[™] Technology Key Features

Mixing modelling

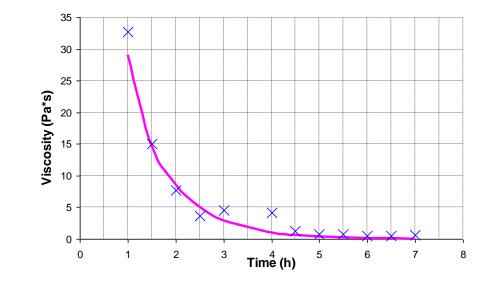


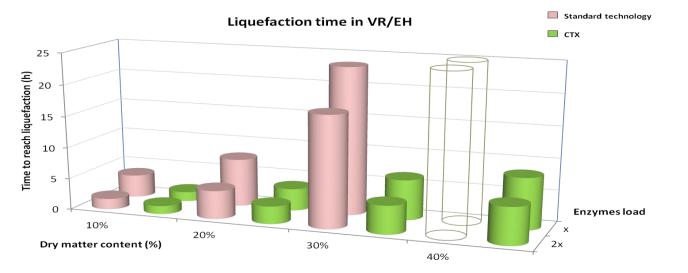

Viscosity reduction t = 0 t = 0.26

t = 0.03

t = 0.5

ray. zo

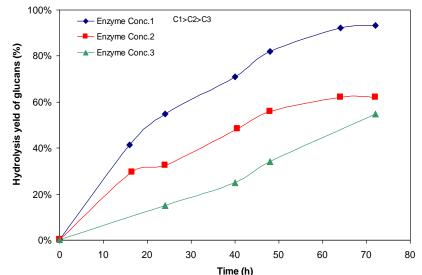


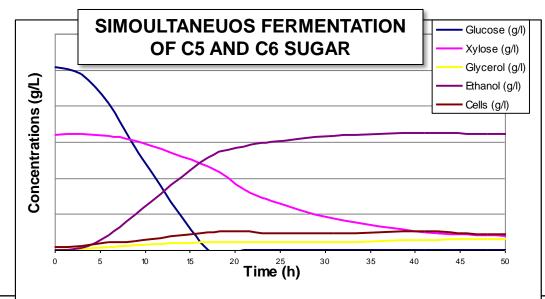

PROESA[™] Technology Viscosity reduction

Advantages of new continuous

high solid Viscosity Reduction concept:

- Possibility to work at dry matter contents up to 40%
- Very low energy consumption for agitation
- Material is liquefied in less than 8 h even at low enzyme load
- Easy pH and temperature control





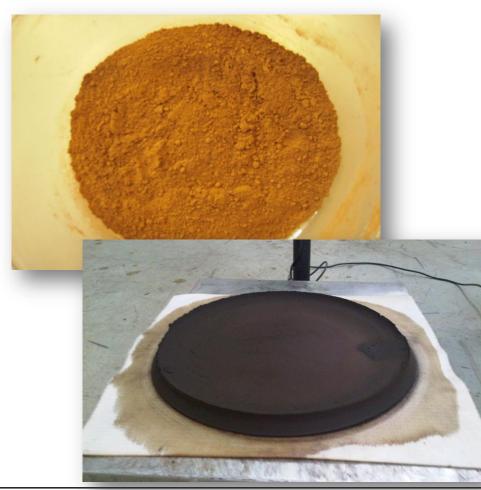
R&D on enzymatic hydrolysis and C5-C6 fermentation

PROESA[™] Technology Key Features

Available MO's will assure fermentation of C5 and C6 sugars.

The fermentation time will be comparable to fermentation time of first generation plants

The beer will contain more then 6% of EtOH, assuring an efficient conversion and low cost during the separation steps compared to other 2 gen EtOH technologies



PROESA[™] Technology Key Features

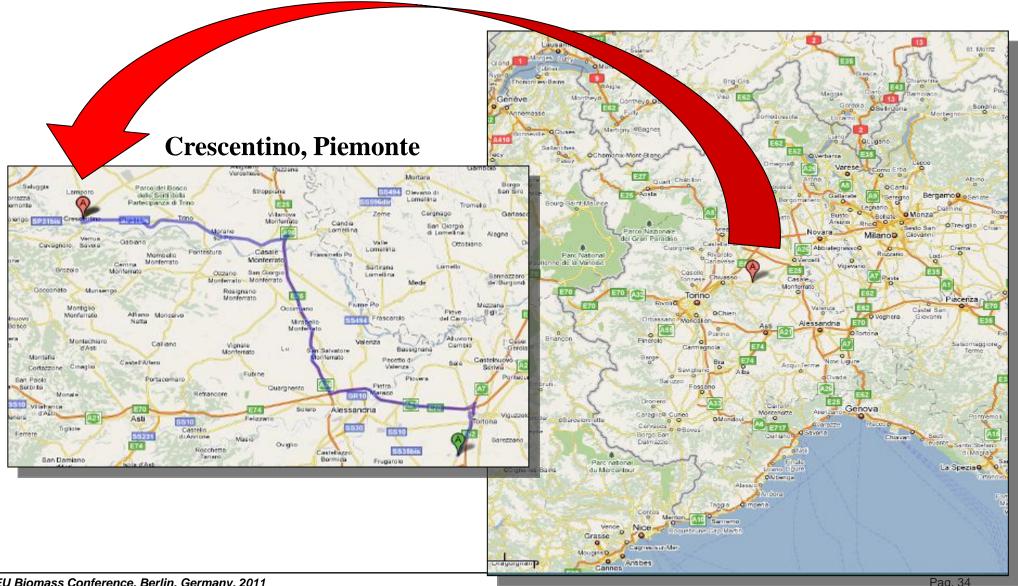
✓ ENERGY INTEGRATION THANKS TO HIGH EFFICIENCY LIGNIN BURNING ✓ PURE LIGNIN FOR CHEMICALS

Lignin from the process has enough energy content to meet all plant energy demand.

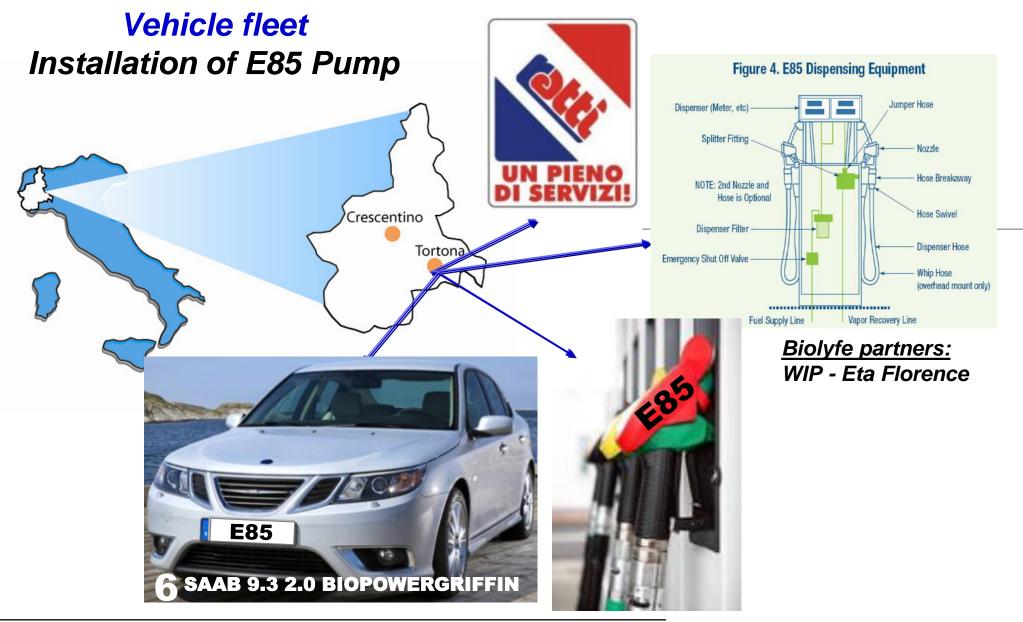
Design of each plant will include a power generation unit.

Lignin from the PROESA[™] technology is free from Sulfur, Chlorine and Ammonia and can constitute an unique base for producing chemical from biomass.

CONSTRUCTION OF THE DEMONSTRATION PLANT



BIOLYFE Demo Plant Location


40.000 t/y First Plant- Key Features

- Production based on Arundo Donax (~5000 ha) and Wheat Straw (300.000 t/y) locally available.
- Plant located 70 km from nearest refinery.
- Plant will incorporate all technology features developed during the R&D project phases.
- Plant will demonstrate at commercial scale the new pretreatment technology (PRIT).
- Plant will incorporate innovative Hydrolisis and Fermentation step as part of the BIOLYFE FP7 Project.
 - Plant will sell Dry Ethanol to major oil company/ies.
- 51.000 ton of CO₂ emission saved per year. 40,000 t/y Ethanol = 6.800 car without CO₂ emission.

XIX ISAF International Symposium on Alcohol Fuels

	PREVIOUS EVENTS	
NAME	HOST	YEAR
ISAF I	Stockholm - Sweden	1976
ISAF II	Wolfsburg - Germany	1977
ISAF III	Asilomar - USA	1979
ISAF IV	Guaruja - Brazil	1980
ISAF V	Auckland - Newzealand	1982
ISAF VI	Ottawa - Canada	1984
ISAF VII	Paris - France	1986
ISAF VIII	Tokyo - Japan	1988
ISAF IX	Florence - Italy	1991
ISAF X	Colorado Soprings - USA	1993
ISAF XI	Sun City - South Africa	1996
ISAF XII	Beijing - China	1998
ISAF XIII	Stockholm - Sweden	2000
ISAF XIV	Phuket - Thailand	2002
ISAF XV	San Diego - USA	2005
ISAF XIVI	Rio de - Janeiro	2006
ISAF XVII	Taiyuan - China	2008
ISAF XVIII	New - Delhi	2010

ISAF XIX

2nd Lignocellulosic Bioethanol Conference VERONA Italy, 11-13 October 2011

Organised by: European Commission & Brazil

Facilitated by: Mossi & Ghisolfi/Chemtex

Chairs: Dario Giordano & Kyriakos Maniatis

Organising Committee: Mrs Soares Pinto, Hart Energy Mr David Chiaramonti, University of Florence Mr Marco Aurelio Lima, LNCTB Mr Kyriakos Maniatis, DG ENER

Logistics: Verona Fiere & Media Consulta

Co-located with: International Symposium on Alcohol Fuels

MEDIA CONSULTA

Thanks for your attention www.biolyfe.eu

David Chiaramonti

CREAR, Research Center for Renewable Energy **RE-CORD**, Renenewable Energy COnsortium for R&D University of Florence david.chiaramonti@unifi.it